Learning with Weak Views Based on Dependence Maximization Dimensionality Reduction

نویسندگان

  • Qing Zhang
  • De-Chuan Zhan
  • Yilong Yin
چکیده

Large number of applications involving multiple views of data are coming into use, e.g., reporting news on the Internet by both text and video, identifying a person by both fingerprints and face images, etc. Meanwhile, labeling these data needs expensive efforts and thus most data are left unlabeled in many applications. Co-training can exploit the information of unlabeled data in multi-view scenarios. However, the assumptions of co-training, i.e., sufficient and redundant are so strong to be held in most situations. It is notable that different views often have different discrimination ability, while views with strong discrimination ability are usually hard to be obtained. As a consequence, it is a promising way to exploit unlabeled multi-view training data to integrate the information of the strong view into the weak view so that the weak view’s discrimination ability can get improved. Only classifiers trained on the weak view will be used to do the classification tasks afterwards. In this paper, based on dependence maximization, we propose a framework to inject the information of strong views into weak ones. Experiments show that the framework outperforms co-training in improving the performances of classifiers trained on the weak view.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters

Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...

متن کامل

Supervised Dimensionality Reduction via Distance Correlation Maximization

In our work, we propose a novel formulation for supervised dimensionality reduction based on a nonlinear dependency criterion called Statistical Distance Correlation, [Székely et al., 2007]. We propose an objective which is free of distributional assumptions on regression variables and regression model assumptions. Our proposed formulation is based on learning a lowdimensional feature represent...

متن کامل

Diagnosis of Diabetes Using an Intelligent Approach Based on Bi-Level Dimensionality Reduction and Classification Algorithms

Objective: Diabetes is one of the most common metabolic diseases. Earlier diagnosis of diabetes and treatment of hyperglycemia and related metabolic abnormalities is of vital importance. Diagnosis of diabetes via proper interpretation of the diabetes data is an important classification problem. Classification systems help the clinicians to predict the risk factors that cause the diabetes or pre...

متن کامل

Semi-Supervised, Dimensionality Reduction via Canonical Correlation Analysis

We analyze the multi-view regression problemwhere we have two views (X1, X2) of the input data and a real target variable Y of interest. In a semi-supervised learning setting, we consider two separate assumptions (one based on redundancy and the other based on (de)correlation) and show how, under either assumption alone, dimensionality reduction (based on CCA) could reduce the labeled sample co...

متن کامل

Suffcient Component Analysis

The purpose of sufficient dimension reduction (SDR) is to find a low-dimensional expression of input features that is sufficient for predicting output values. In this paper, we propose a novel distribution-free SDR method called sufficient component analysis (SCA), which is computationally more efficient than existing methods. In our method, a solution is computed by iteratively performing depe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012